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ABSTRACT
Relevance. Veillonella is associated with diseases of the oral cavity. Representatives of this genus occupy a signifi-
cant share in the composition of the plaque microbiota and are involved in the formation of food chains and regu-
lating the pH of the oral microbiome. 
The aim of this article is to provide an overview of scientific studies on the Veillonella taxonomic group's position 
in the oral microbiome and their possible impact on the development of infectious diseases of the oral cavity.
Materials and methods. A scientific search was conducted in the databases MEDLINE, EMBASE, NCBI, Web of Sci-
ence, PubMed, Scopus, and eLibrary.RU for the last 40 years. 88 sources in English and 1 in Russian were analyzed 
and included in this review. 
Results. Various species of Veillonella promote the adhesion of Streptococcus mutans and metabolize the lactate 
produced by streptococci. They also play an essential role in forming the periodontium microbial biofilm, entering 
into co-aggregation with primary, intermediate and late colonizers, including such periodontal pathogens as Fu-
sobacterium nucleatum and Porphyromonas gingivalis. Veilonella is involved in the formation of lipopolysaccharides 
and hydrogen sulfide in pulpitis, periapical periodontitis and halitosis. 
Conclusion. Veillonella spp. is a significant component of the oral microbiome and can be viewed as a stabilizing 
component and as an indicator of a violation of the ecosystem's metabolic situation.
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АННОТАЦИЯ
Актуальность. Вейлонеллы связаны с заболеваниями полости рта. Представители этого рода занимают 
значительную долю в составе микробиоты зубного налета (бляшки) и участвуют в формировании пищевых 
цепей и регуляции pH микробиома полости рта.
Целью данной статьи является предоставление обзора научных исследований, посвященных положению 
таксономической группы вейлонелл в микробиоме полости рта и их возможном влиянии на развитие ин-
фекционных заболеваний полости рта.
Материалы и методы. Был проведен научный поиск в базах данных MEDLINE, EMBASE, NCBI, Web of Sci-
ence, PubMed, Scopus и eLibrary.RU за последние 40 лет. Были проанализированы 88 источников на англий-
ском языке, 1 на русском языке.
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Результаты. Различные виды Veillonella способствуют адгезии Streptococcus mutans и метаболизируют лактат, 
вырабатываемом стрептококками. Они также играют важную роль в формировании микробной биопленки 
пародонта, вступая в коагрегацию с первичными, промежуточными и поздними колонизаторами, в том числе 
с такими пародонтопатогенами, как Fusobacterium nucleatum и Porphyromonas gingivalis. Вейлонеллы участвуют 
в образовании липополисахаридов и сероводорода при пульпите, периапикальном периодонтите и галитозе.
Заключение: Veillonella spp. является важным компонентом микробиома полости рта и может рассматриваться 
как стабилизирующий компонент и как индикатор нарушений метаболической ситуации в экосистеме ниши.
Ключевые слова: Veillonella, микробиом полости рта, биопленка, кариес зубов, пародонтит, пародонтопатогены.
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INTRODUCTION

Microaerophilic streptococci and Veilonella are early 
colonizers of the oral mucosa and dental surface. Some au-
thors consider Veilonella as dependent on acid-producing 
streptococci since they utilize organic acids, in particular, 
lactate [1, 2]. Hence, Veillonella spp. are the most impor-
tant symbiont that primarily colonizes the enamel's sur-
face, cement of the tooth and the oral mucosa.

Due to the continuous clearance of the oral cavity (saliva 
flow, swallowing, chewing, oral hygiene), the attachment 
of primary colonizers to the tooth surface and subsequent 
cellular co-adhesion/co-aggregation of microorganisms are 
necessary for the formation of oral biofilm [1-6].

The aim of this article is to provide an overview of scien-
tific studies on the Veillonella taxonomic group’s position in 
the oral microbiome and their possible impact on the devel-
opment of infectious diseases of the oral cavity. In particu-
lar, the materials on the type strain of Veillonella parvula 
and other representatives of this genus were analyzed. 

MATERIALS AND METHODS

Using the PRISMA criteria, a scientific search was con-
ducted in the databases MEDLINE (n = 47), EMBASE (n = 3), 
NCBI, Web of Science (n = 2), PubMed (n = 2,011), Scopus (n = 
98), and eLibrary.RU (n = 3,190) for the last 40 years. 5,262 
records were removed before screening. 88 sources in English 
and 1 in Russian were analyzed and included in this review.

The main keywords for which the search was con-
ducted were: “Veillonella”, “oral microbiota”, “perodon-
tal disease”, “periodontal pathogens”. There were no re-
strictions on the source's language, the duration of the 
study, or the demographics of the patients; the publica-
tions were dated 1980-2020. 

RESULTS

Features of Veillonella metabolism a
nd its co-aggregation properties
Representatives of the family Veillonellaceae, the ge-

nus Veillonella are gram-negative anaerobic micrococci 
belonging to the type Firmicutes [6]. There are currently 
12 species in the genus Veillonella [6, 7], five of them 
(V. parvula, V. atypica, V. dispar, V. rogosae, V. denticari-

osi) are usually isolated from the human oral cavity [6, 
8, 9]. Veillonella species are among the most common 
and dominant oral bacteria [10-12]. Oral Veillonella col-
onises the tongue's surface, the mucous membrane of 
the cheeks, and the supra-and subgingival plaque.

Veillonella has the property of using lactate, pyruvate, 
and oxaloacetate as the primary energy sources [13, 14]. 
The ATP formed in this way is used in the ATP-depen-
dent transport of amino acids, the so-called "ATP-bind-
ing cassette transporters", found in a wide range of bac-
teria [15]. It is known that the concentration of lactic 
acid on the surface of the tongue reaches 6.7-7.8 mmol/l 
after rinsing with sucrose [16, 17] due to the dominance 
of lactate-producing bacteria [15]. Under these condi-
tions, the specific association of Veillonella spp. is facili-
tated with lactate-producing bacteria in dental plaque, 
which allows us to consider them as an indicator of a 
high risk of developing dental caries [18].

Another characteristic of Veillonella species is its ability 
to proliferate co-aggregately with colonizers at different 
stages. Veillonella is categorized under the "purple com-
plex" in the microbiological color scheme of periodontal 
diseases, and serves as a major antagonist to acid-produc-
ing streptococci and periodontopathogenic species within 
the "red complex". [19-23, 85]. However, this does not ex-
clude the possible antagonistic role of Veillonella against 
periodontal pathogenic and aggressive species, particu-
larly enterococci and staphylococci [23].

It is proved that the majority of Veillonella spp. isolates 
isolated from the cheeks and tongue's mucous membrane 
(42 out of 55) have co-aggregation properties. Of the 24 
Veillonella spp. isolates isolated from subgingival dental 
plaque samples, 20 were represented by Veillonella par-
vula and were co-aggregated with Actinomyces viscosus, 
Actinomyces naeslundii, Actinomyces israelii, S. sanguis, 
Fusobacterium nucleatum and other bacteria present in 
the periodontal flora. Simultaneously, all Veillonella spe-
cies were co-aggregated with S. salivarius on the surface 
of the tongue, but not in the subgingival plaque [24].

Previous studies by Distler W et al. and Mix et al. 
showed a symbiosis between Veillonella spp. and strep-
tococci in dental plaque, and streptococci, producing 
lactate, acts as a nutrient source for Veillonella [25, 26]. 
Moreover, co-existence with Veillonella induced A-amy-
lase expression in Streptococcus gordonii, which allows 
Streptococcus to decompose starch into oligosaccha-
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rides and, consequently, metabolize them into lactate, 
which can then be used by Veillonella [27].

In vivo and in vitro studies (Kolenbrander, 2011, Valm 
et al., 2011) showed that Veillonella also co-aggregates 
with middle and late colonizers, including the peri-
odontal pathogen Porphyromonas gingivalis [28, 29].

These results indicate that the three species of Veil-
lonella are evenly distributed on the oral mucosa and 
the partners in the co-aggregation and form the oral 
cavity's bacterial ecology.

The ability of Veillonella to produce hydrogen sulfide
Bad breath – halitosis is caused by the products of oral 

bacteria's metabolism that live on the back of the tongue 
[30, 31]. First of all, halitosis is associated with inflamma-
tory periodontal diseases caused by periodontal pathogens 
[32-35]. Periodontal pathogens produce hydrogen sulfide 
(H₂S), which causes bad breath [36, 37]. Veillonella were 
also identified as producers of hydrogen sulfide, although 
this ability is less pronounced in them [14, 30, 33, 37-39].

In a study by Jumpei Washio et al. (2005), on the con-
trary, it was found that the predominant hydrogen sulfide-
producing bacteria were not periodontopathogens but were 
resident oral bacteria, such as Veillonella and Actinomyces [9]. 

Jumpei Washio et al. in 2014 studied the metabolic ac-
tivity of the typical strains of Veillonella atypica, Veillon-
ella dispar, and Veillonella parvula and their symbiosis with 
other bacteria [40]. Veillonella was found to produce hydro-
gen sulfide from L-cysteine (keratin, as the main protein 
in desquamation, contains cystine molecules), with the 
participation of cystathionine synthase and cystathionine 
lyase. The authors noted that the production of hydrogen 
sulfide is regulated by oral factors (pH and lactate levels). 
In addition to hydrogen sulfide, V. atypica and V. parvula 
secrete ammonia and serine, suggesting the involvement 
of cystathionine synthase lyase (EC 4.2.1.22).

The role of Veillonella parvula in the formation 
of the microbiome in infancy and early childhood
The formation of the oral microbiome begins in the pre-

natal period and is closely related to the development of the 
dentoalveolar system. Studies by Caroline Bearfield et al. 
(2002) and Kjersti Aagaard et al. (2014) found that the colo-
nization of microorganisms in the fetus begins before birth. 
Almost 70% of pregnant women have several oral microor-
ganisms present in their amniotic fluid, such as Streptococ-
cus spp., Fusobacterium nucleatum, Porphyromonas, Neisseria 
spp., and Prevotella tannerae. A type of Firmicutes has also 
been found in the human placenta and amniotic fluid [41-43]. 
Microbial colonization of the oral cavity continues after birth 
by passing through the maternal birth canal [44-47]. Appar-
ently, the set of earlier colonizers determines the subsequent 
colonization, which may vary depending on the chosen ob-
stetric reception (natural birth or C-section) and the condi-
tions of maintenance after birth (premature babies, children 
with various pathologies and healthy infants) [48, 49], which 
leads to more complex and stable ecosystems in the adult 
period [50]. In a study by Eimear Hurley et al. (2019), it was 

noted that over time, the bacterial communities of natural 
born infants resemble the bacterial communities of moth-
ers’ birth canal, while the bacterial profile of babies after C-
section resembles the bacteriome present in the cutaneous 
tissue, mainly Veillonella spp. and others [14]. Although, this 
effect disappears after the first week after birth [51].

The oral microbiome gradually evolves with the erup-
tion of the first baby teeth in infancy [52]. It is notewor-
thy that the oral ecosystem begins to reform with the first 
tooth's eruption, which provides new places of adhesion 
and shows significantly greater diversity compared to 
that in young children. A lower level of representatives of 
Gram-positive facultative anaerobic species and a higher 
level of gram-negative facultative anaerobic species are 
observed during the eruption of baby teeth [44].

The oral microbiome is also involved in the formation 
of innate and acquired immune functions that affect 
the child's future health. Following birth, colonization 
and the formation of microbial pioneers in the oral cav-
ity commence through contact with the outside world 
through breathing, feeding, and contact with attending 
physicians and relatives [14]. The core of the oral micro-
biome in young children was determined by Mason et al. 
and included Streptococcus, Gemella, Granulicatella and 
Veillonella genera [16]. Interestingly, these main species 
accounted for 45% (23% - 61%) of each child’s total oral 
microbiota. Of the 178 identified species, only 33 were 
common in more than 75% of infants [14, 44]. 

As the child get older, the versatility of the oral micro-
biome continue to expand. Regardless of the caries index, 
there was a significant difference in the microbial compo-
sition of saliva and plaque samples [14]. In the saliva sam-
ples of children, Streptococcus vestibularis/salivarius and 
Veillonella parvula/atypica/dispar were the dominant taxa, 
accounting for 60% of the total volume [14]. In plaque, the 
most common genera were Veillonella, Streptococcus, Acti-
nomyces, Selenomonas and Leptotrichia, which constituted 
30-50% of the bacterial plaque community [14, 50]. 

The saliva microbiome
When the oral mucosa's epithelium is desquamated 

and the biofilms are separated as they mature, the asso-
ciated bacteria are released into the saliva from differ-
ent oral biotopes. The saliva microbiome also contains 
microorganisms from the biofilm of the tongue surface. 
The tongue's papillary surfaces contain microbiota bi-
ased towards anaerobic genera such as Prevotella and 
Veillonella, while the ventral surface of the tongue car-
ries microbiota rich in streptococci and gemellae [53].

Veillonella parvula and the pathogenesis of dental caries
Features of oral hygiene, the level of fluoride in water, 

dietary characteristics, as well as the incidence of den-
tal caries and the availability of dental care vary signifi-
cantly in different countries of the world (www.who.int). 
In the Nordic countries, long-term population-based and 
individual caries prevention measures have resulted in 
a low average incidence of caries, while in developing 
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countries, there is an increase or continuation of a high 
incidence of caries. However, even in communities with a 
low incidence of caries, despite preventive efforts, caries 
is detected in about 15-20% of the population [54].

The prevailing ecological hypothesis of microbial plaque 
/ biofilm [55, 56] describes an ecological shift towards en-
richment with acidogenic and acid-resistant species under 
low pH conditions, such as after sugar consumption [57-59]. 
In the study of Esberg et al. [60], diverse strains of Actino-
myces, Bifidobacterium, and Veillonella, as well as S. wiggsiae, 
S. mutans, and S. sobrinus, were found in groups of patients 
consuming high doses of sucrose, which were associated 
with the presence of dental caries in children and adults in 
other studies [59, 61, 62]. The shift of the oral cavity's pH 
level to the acidic side activates enzymes and regulates the 
transcription and translation of bacterial proteins/enzymes 
[56]. According to the authors, in children who do not suffer 
from caries, the detection of Veillonella, and not S. mutans, 
is considered as a predictor of a high risk of developing car-
ies in the future. However, in our opinion, this statement 
needs more serious arguments.

S. mutans is associated only with the initiation of caries 
(white spot stage) but not with caries' progression. Other 
potential acid-producing bacteria, including strains of 
Selenomonas, Neisseria, and S. mitis, are observed at high 
levels in white spots indicating primary demineralized 
enamel. Propionibacterium spp. are associated with the 
progression of caries but are not detected at high levels.

Initially, the diverse community in caries-free areas 
of enamel or in white spots shifts to a progressive loss of 
microbial diversity in caries-active areas. Species mini-
mized in caries-active foci include Lachnospiraceae spp., 
S. mitis group, Corynebacterium matruchotii, S. gordonii, 
S. cristatus, Capnocytophaga gingivalis, Eubacterium 
IR009, and Campylobacter rectus [63].

Streptococci of the S. mitis group, such as S. gordonii, 
produce hydrogen peroxide in abundance in several 
ways [1, 64-66]. Kreth et al. have reported that the Н₂О₂ 
concentrations generated by S. sanguinis and S. gordonii 
are sufficient to inhibit the growth of cariogenic Strep-
tococcus mutans [67]. 

A study by Peng Zhou et al. has shown that the associa-
tion of the Veillonella parvula PK1910 strain (formerly Veil-
lonella atypica PK1910 [68]) in a mixed culture of S. gordo-
nii-S. mutans prevents the inhibition of S. mutans from S. 
gordonii [69]. It is assumed that the anaerobic V. parvula 
PK1910 has a high resistance to oxygen stress and actively 
counteracts the effect of H₂O₂ due to the catalase encoded 
by the catagene in V. parvula PK1910 [70]. Veillonella levels 
correlate with the total number of acid-forming species. 
The main explanation for this phenomenon may be the 
ability of Veillonella to participate in lactate metabolism. 

Thus, the microbial community's cariogenic poten-
tial is primarily associated with the metabolic activity 
of bacteria that acidify the oral cavity, and representa-
tives of the genus Veillonella act as metabolic antago-
nists and neutralize the acidogenic effect of strepto-
cocci and other cariogenic species. Their presence in 

significant numbers is most likely due to the availability 
of an available food source, which creates the possibility 
of rapid reproduction and colonization of this biotope. 

Protective role of Veillonella parvula in the pathogenesis 
of inflammatory periodontal diseases
The oral cavity pioneer colonizers' metabolic activity 

creates an environment favourable for colonization by in-
termediate species, all of which are Veillonella species. Veil-
lonella spp. actively co-aggregate with many bacteria, in-
cluding the initial colonizer Streptococcus gordonii and the 
periodontal pathogen Fusobacterium nucleatum, at various 
oral biofilm formation stages [19, 20-22]. F. nucleatum, 
which is a strict anaerobe and an early intermediate colo-
nizer [11], plays an essential role in protecting anaerobic 
microorganisms from atmospheric oxygen and hydrogen 
peroxide in the oral biofilm and is able to support the 
growth of Porphyromonas gingivalis under aerated condi-
tions [71, 72]. Unlike fusobacteria, Veillonella spp. more 
tolerant to oxygen stress. Peng Zhou et al. hypothesized 
that the catalase activity of Veillonella spp. can play a cru-
cial role in protecting obligate anaerobes, particularly F. 
nucleatum, from oxygen stress and contribute to its per-
sistence in the early microbiome [70]. A similar phenom-
enon was also found in the study of Periasamy and Kolen-
brander [21]: the strain Veillonella spp. PK1910 increased 
the biomass of F. nucleatum in the biofilm using the flow 
cell system. The growth of intermediate species causes a 
change in the local environment and generates nutrients, 
such as heme / hemin, that promote the growth of later 
colonizers, many of which are periodontopathogens [73]. 
A study by Peng Zhou et al. has also been shown that Veil-
lonella produces nutrients for the survival and growth of 
periodontal pathogens [70]; however, in our opinion, this 
cannot be considered as an argument for their pathogenic 
role in the development of gingivitis and periodontitis. 

Usually, the biofilm community maintains homeosta-
sis, but when the periodontal immune response is im-
paired, periodontal tissue pathology occurs due to the 
release of matrix metalloproteinases from neutrophils. 
At the same time, T cells contribute to the resorption of 
the alveolar bone through the activation of the cytokine 
cascade [74-76]. 

The bacteria that dominate the polymicrobial commu-
nities associated with various forms of periodontitis can 
also be found in a healthy state but with a markedly re-
duced relative abundance compared to healthy tooth sur-
faces' plaques [77]. According to the ecological hypothesis, 
changes in environmental conditions may contribute to 
pathogens' growth (currently defined as pathobionts) with 
the development of periodontitis [78]. In periodontal dis-
eases, the appearance of new types of exogenous patho-
gens that are absent in a healthy state is not observed. The 
reason may be that the decrease in the number of Strepto-
coccus mutans, Veillonella parvula, Streptococcus sobrinus, 
Scardovia wiggsiae and Actinomyces spp. compensates for 
the increase in the number of putative periodontopatho-
gens of the “red” and “orange” groups [79-81].
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Lingyang Tian et al. (2015) differentiated the microflora 
in dental plaque from healthy coronal surfaces and peri-
odontal pockets using PCR-dipstick DNA chromatography. 
In this study, V. parvula was observed mainly subgingival 
(93.8%) together with S. mutans (100%) (since Veillonella 
shows a coactive relationship with acidogenic bacteria), 
against supragingival parts, where the concentration of V. 
parvula was 18.8% [77]. While V. parvula was ubiquitous 
in all intraoral niches [79, 82], this species lost its domi-
nant role in plaques in patients suffering from inflamma-
tory periodontal diseases. This result is in good agreement 
with previous studies by Kumar et al. (2005, 2006) and 
Stingu et al. (2012), who suggested that V. parvula is a spe-
cies demonstrating periodontal health [62, 83, 84].

In an experimental model for the treatment of liga-
ture periodontitis, Tsarev and Ippolitov (2013) used 
eubiotic strains of Veillonella parvula and Streptococcus 
salivarius [23, 85]. After 10 days of the experiment, the 
frequency of isolation of pathogenic microorganisms 
decreased sharply, S. salivarius was isolated in 80% of 
laboratory rats, V. parvula – in 20% (in the amount of 
4.5-4.0 lg CFU). After the end of the course, the control 
study showed the preservation of S. salivarius in 40% 
and V. parvula – in 60% of the animals. Cytomorphologi-
cal manifestations of reparative changes in bone tissue 
and a decrease in periodontal inflammation intensity 
were observed in the experimental group. 

Inflammation is an important environmental change 
that can stimulate the growth of periodontal pathogenic 
microorganisms, by destroying tissues, with the release of 
nutrients (for example, degraded collagen, heme-contain-
ing compounds, sources of amino acids and iron, respec-
tively) [86, 87]. These nutrients can be transferred through 
the inflammatory exudate into the gingival fissure, stimu-
lating the growth of subgingival proteolytic and saccharo-
lytic bacteria that have the ability to absorb iron [88]. 

Thus, many pathobionts can actively colonize the 
supragingival and subgingival zones and selectively ex-
pand their habitat at the expense of those species that 
cannot adapt to new environmental conditions, thereby 
creating dysbiosis of the periodontal complex tissues. 
The dominance of representatives of the genus Veil-
lonella, which exhibit antagonistic activity in relation 
to periodontopathogenic species of the red complex, 
should probably be considered an essential factor in 
stabilizing the periodontal microbiome.

In a study by Samir Shah et al. saprophytic biofilms 
(consisting of Streptococcus oralis, Streptococcus sanguis, 
Streptococcus mitis, Actinomyces naeslundii, Neisseria mu-
cosa and Veillonella parvula) under the influence of ciga-
rette smoke showed early and widespread cell death, the 
main metabolic functions of bacteria in the microbiome 
were significantly reduced; however, in biofilms (includ-
ing S. oralis, S. sanguis, S. mitis, A. naeslundii, N. mucosa, 
and V. parvula, Fusobacterium nucleatum, Porphyromonas 
gingivalis, Filifactor alocis, Dialister pneumosintes, Sele-
nonomas sputigena, Selenominas noxia, Catonella morbi, 
Parvimonas micra, and Tannerella forsythia) in response 
to smoke exposure, several metabolic pathways were 
over-expressed. A cytokine-rich, pro-oxidant anaerobic 
environment supports inflammatory pathobionts and, in 
the absence of commensal antagonism, can promote the 
creation of pathogen-rich biofilms in smokers [89]. 

CONCLUSION

An analysis of the results of the studies presented in 
this review revealed the critical role of Veillonella spp. in 
the oral microbiome at all stages of human life, starting 
from perinatal age. The role of the human microbiome in 
immune, inflammatory, and degenerative diseases is in-
creasing with the development of technologies that link 
oral and intestinal dysbiosis with a high risk of inflamma-
tory, autoimmune, and systemic degenerative diseases. 

In our opinion, the taxonomic group (genus) Veillon-
ella spp. is a significant component of the oral microbi-
ome in terms of quantity and functional activity, it can 
be considered in two main aspects:

1. As a stabilizing component in the numerous mi-
crobial associations of this ecological niche – the oral 
cavity, which supports the most important metabolic 
pathways and regulates the pH of the ecosystem.

2. As an indicator of a violation of the ecosystem's 
metabolic situation, indicating the excessive develop-
ment of caries-causing microbiota (mainly streptococci 
and actinomycetes), which is an indicator, but not a pre-
dictor of a high risk of dental caries. 

Considering the above, the therapeutic effect de-
pends on the degree of colonization of Veillonella spp., 
including with the help of various oral hygiene products 
that may contain probiotic strains of Veillonella spp., 
which seems to be an urgent task of dentistry.
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