The role of microbiota and epithelial barrier interaction in the pathogenesis of periodontal diseases: a systematic review
https://doi.org/10.33925/1683-3759-2024-1013
Abstract
Relevance. Periodontitis and gingivitis are a significant concern in modern dentistry due to the persistently high global prevalence of gingivitis and periodontitis. This study aims to review and systematize current scientific knowledge regarding the role of increased epithelial permeability in the gingival sulcus in the pathogenesis of these diseases. It also explores key aspects of the interaction between the oral microbiota and the epithelial barrier.
Materials and Methods. A systematic analysis of scientific articles and original research was conducted using the PubMed, Google Scholar, and eLIBRARY databases. From an initial pool of 1,536 publications spanning 2004 to 2024, 53 articles were selected, comprising in vivo and in vitro studies as well as review articles. The findings from these studies are summarized in this review.
Results. Emerging evidence indicates that disturbances in the mucosal microbiota can modulate both innate and adaptive immune responses. Beneficial bacteria may trigger antimicrobial defense mechanisms through host immune responses or directly counteract periodontopathogens that compromise the epithelial barrier. Epithelialmesenchymal transition (EMT) is a critical mechanism through which epithelial cells lose their characteristic properties, altering their phenotype. These changes can result in basement membrane degradation and a loss of epithelial barrier integrity, ultimately contributing to periodontal pocket formation and the infiltration of pathogenic microorganisms into oral tissues. Intercellular junctions, particularly tight junctions, are vital for maintaining the stability and functionality of epithelial cells, playing a crucial role in these processes.
Conclusion. Impairment of the epithelial barrier, particularly increased permeability, facilitates the infiltration of microbial pathogens and may lead to dysbiosis, exacerbating epithelial damage in the gingival sulcus and contributing to the progression of periodontal diseases. When evaluating increased epithelial permeability in the gingival sulcus, it is essential to consider factors such as the presence of periodontopathogens, their metabolites, the expression of tight junction proteins, and genetic predispositions.
Keywords
About the Authors
M. I. KeitslerRussian Federation
Maria I. Keitsler, DDS, PhD student, Department of the Restorative Dentistry and Periodontology
Dolgorukovskaya St., 4, Moscow, Russian Federation, 127006
E. S. Slazhneva
Russian Federation
Ekaterina S. Slazhneva, DMD, PhD, Associate Professor, Department of the Restorative Dentistry and Periodontology
Moscow
I. G. Ostrovskaya
Russian Federation
Irina G. Ostrovskaya, DMD, PhD, DSc, Professor, Department of the Biochemistry
Moscow
V. G. Atrushkevich
Russian Federation
Victoria G. Atrushkevich, DMD, PhD, DSc, Professor, Head of the Department of Restorative Dentistry and Periodontology
Moscow
References
1. Kovalevskiy AM, Ushakova AV, Kovalevskiy VA, Prozherina EYu. Bacterial biofilm of periodontal pockets: the revision of periodontology experience. Parodontologiya. 2018;23(2):15-21 (In Russ.). doi: 10.25636/PMP.1.2018.2.3
2. Ippolitov EV, Nikolaeva EN, Tsarev VN. Oral biofilm: inductors of immunity signal pathways. Stomatology. 2017;96(4):5862 (In Russ.). doi: 10.17116/stomat201796458-62
3. Tsarev VN, Nikolaeva EN, Ippolitov EV. Periodontophatogenic bacteria of the main factors of emergence and development of periodontitis. Journal of microbiology, epidemiology and immunobiology. 2017;94(5):101- 112 (In Russ.). doi: 10.36233/0372-9311-2017-5-101-112
4. Bosshardt DD, Lang NP. The junctional epithelium: from health to disease. J Dent Res. 2005;84(1):9-20. doi: 10.1177/154405910508400102
5. Blaskewicz CD, Pudney J, Anderson DJ. Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod. 2011;85(1):97-104. doi: 10.1095/biolreprod.110.090423
6. Bartold PM, Van Dyke TE. Host modulation: controlling the inflammation to control the infection. Periodontology 2000. 2017;75(1):317-329. doi: 10.1111/prd.12169
7. Slazhneva ES, Tikhomirova EA, Atrushkevich VG. Periodontopathogens: a new view. Systematic review. Part 1. Pediatric dentistry and dental prophylaxis. 2020;20(1):70-76. (In Russ.). doi:10.33925/1683-3031-2020-20-1-70-76
8. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002-17. doi: 10.1128/JB.00542-10
9. Tikhomirova EA, Slazhneva ES, Atrushkevich VG. β-defensins and the inflammatory periodontal diseases: a systematic review. Parodontologiya. 2020;25(4):276- 286. (In Russ.). doi:10.33925/1683-3759-2020-25-4-276-286
10. Katz J, Sambandam V, Wu JH, Michalek SM, Balkovetz DF. Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes. Infect Immun. 2000;68(3):1441-1449. doi: 10.1128/IAI.68.3.1441-1449.2000
11. Lagha AB, Groeger S, Meyle J, Grenier D. Green tea polyphenols enhance gingival keratinocyte integrity and protect against invasion by Porphyromonas gingivalis. Pathog Dis. 2018;76(4):fty030. doi: 10.1093/femspd/fty030
12. Katz J, Yang Q, Zhang P, Potempa J, Travis J, Michalek SM, et al. Hydrolysis of epithelial junctional proteins by Porphyromonas gingivalis gingipains. Infect Immun. 2002;70(5):2512-2518. doi: 10.1128/IAI.70.5.2512-2518.2002
13. Abe-Yutori M, Chikazawa T, Shibasaki K, Murakami S. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodontal Res. 2017;52(1):42-50. doi: 10.1111/jre.12367
14. Guo W, Wang P, Liu ZH, Ye P. Analysis of differential expression of tight junction proteins in cultured oral epithelial cells altered by Porphyromonas gingivalis, Porphyromonas gingivalis lipopolysaccharide, and extracellular adenosine triphosphate. Int J Oral Sci. 2018;10(1):1-7. doi: 10.1038/ijos.2017.51
15. Amano A. Disruption of epithelial barrier and impairment of cellular function by Porphyromonas gingivalis. Front Biosci. 2007;6:3965-3974. doi: 10.2741/2363
16. Nakagawa I, Amano A, Inaba H, Kawai S, Hamada S. Inhibitory effects of Porphyromonas gingivalis fimbriae on interactions between extracellular matrix proteins and cellular integrins. Microbes Infect. 2005;7(2):157–163. doi: 10.1016/j.micinf.2004.10.007
17. Fujita T, Ashikaga A, Shiba H, Uchida Y, Hirono C, Iwata T, et al. Regulation of IL-8 by Irsogladine maleate is involved in abolishment of Actinobacillus actinomycetemcomitans-induced reduction of gap-junctional intercellular communication. Cytokine. 2006;34(5–6):271–277. doi: 10.1016/j.cyto.2006.06.002
18. Noguchi T, Shiba H, Komatsuzawa H, Mizuno N, Uchida Y, Ouhara K, et al. Syntheses of prostaglandin E2 and E-cadherin and gene expression of β-defensin-2 by human gingival epithelial cells in response to actinobacillus actinomycetemcomitans. Inflammation. 2003;27(6):341–349. doi: 10.1023/B:IFLA.0000006702.27906.e9
19. Uchida Y, Shiba H, Komatsuzawa H, Hirono C, Ashikaga A, Fujita T, et al. Irsogladine maleate influences the response of gap junctional intercellular communication and IL-8 of human gingival epithelial cells following periodontopathogenic bacterial challenge. Biochem Biophys Res Commun. 2005;333(2):502–507. doi: 10.1016/j.bbrc.2005.05.197
20. Damek-Poprawa M, Korostoff J, Gill R, Dirienzo JM. Cell junction remodeling in gingival tissue exposed to a microbial toxin. J Dent Res. 2013;92(6):518–523. doi: 10.1177/0022034513486807
21. Uitto VJ, Pan YM, Leung WK, Larjava H, Ellen RP, Finlay BB, et al. Cytopathic effects of Treponema denticola chymotrypsin-like proteinase on migrating and stratified epithelial cells. Infect Immun. 1995;63:3401–3410. doi: 10.1128/iai.63.9.3401-3410.1995
22. Galea I. The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol. 2021;18(11):2489-2501. doi: 10.1038/s41423-021-00757-x
23. Hijazi K, Lowe T, Meharg C, Berry SH, Foley J, Hold GL. Mucosal microbiome in patients with recurrent aphthous stomatitis. J Dent Res. 2015;94(3 Suppl):87S-94S. doi: 10.1177/0022034514565458
24. Pat Y, Yazici D, D'Avino P, Li M, Ardicli S, Ardicli O, et al. Recent advances in the epithelial barrier theory. Int Immunol. 2024;36(5):211-222. doi: 10.1093/intimm/dxae002
25. Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, et al. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration. Front Cell Neurosci. 2017;11:216. doi: 10.3389/fncel.2017.00216
26. Vitkov L, Singh J, Schauer C, Minnich B, Krunić J, Oberthaler H, et al. Breaking the Gingival Barrier in Periodontitis. Int J Mol Sci. 2023;24(5):4544. doi: 10.3390/ijms24054544
27. Stehlikova Z, Tlaskal V, Galanova N, Roubalova R, Kreisinger J, Dvorak J., et al. Oral Microbiota Composition and Antimicrobial Antibody Response in Patients with Recurrent Aphthous Stomatitis. Microorganisms. 2019;7(12):636. doi: 10.3390/microorganisms7120636
28. Su SC, Chang LC, Huang HD, Peng CY, Chuang CY, Chen YT, et al. Oral microbial dysbiosis and its performance in predicting oral cancer. Carcinogenesis. 2021;42(1):127-135. doi: 10.1093/carcin/bgaa062
29. Tsukita S, Furuse M. Overcoming barriers in the study of tight junction functions: from occludin to claudin. Genes Cells. 1998;3(9):569-73. doi: 10.1046/j.1365-2443
30. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200(4):525-540. doi: 10.1007/s00203-018-1505-3
31. Yang CY, Yeh YM, Yu HY, Chin CY, Hsu CW, Liu H, et al. Oral Microbiota Community Dynamics Associated With Oral Squamous Cell Carcinoma Staging. Front Microbiol. 2018;9:862. doi: 10.3389/fmicb.2018.00862
32. Yang J, Ran M, Li H, Lin Y, Ma K, Yang Y,et al. New insight into neurological degeneration: Inflammatory cytokines and blood-brain barrier. Front Mol Neurosci. 2022;15:1013933. doi: 10.3389/fnmol.2022.1013933
33. Yang SF, Huang HD, Fan WL, Jong YJ, Chen MK, Huang CN, et al. Compositional and functional variations of oral microbiota associated with the mutational changes in oral cancer. Oral Oncol. 2018;77:1-8. doi: 10.1016/j.oraloncology.2017.12.005
34. Moutsopoulos NM, Konkel JE. Tissue-Specific Immunity at the Oral Mucosal Barrier. Trends Immunol. 2018;39(4):276-287. doi: 10.1016/j.it.2017.08.005
35. Ronay V, Belibasakis GN, Schmidlin PR, Bostanci N. Infected periodontal granulation tissue contains cells expressing embryonic stem cell markers. A pilot study. Schweiz Monatsschr Zahnmed. 2013;123(1):12-6. doi: 10.5167/uzh-77307
36. Dabija-Wolter G, Cimpan MR, Costea DE, Johannessen AC, Sørnes S, Neppelberg E, et al. Fusobacterium nucleatum enters normal human oral fibroblasts in vitro. J Periodontol. 2009;80(7):1174-83. doi: 10.1902/jop.2009.090051
37. Dutzan N, Konkel JE, Greenwell-Wild T, Moutsopoulos NM. Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol. 2016;9(5):1163-1172 doi: 10.1038/mi.2015.136
38. Tribble GD, Lamont RJ. Bacterial invasion of epithelial cells and spreading in periodontal tissue. Periodontology 2000. 2010;52(1):68-83. doi: 10.1111/j.1600-0757.2009.00323
39. Akiyama SK, Olden K, Yamada KM. Fibronectin and integrins in invasion and metastasis. Cancer Metastasis Rev. 1995 Sep;14(3):173-89. doi: 10.1007/BF00690290
40. Ye P, Yu H, Simonian M, Hunter N. Expression patterns of tight junction components induced by CD24 in an oral epithelial cell-culture model correlated to affected periodontal tissues. J Periodontal Res. 2014;Apr;49(2):253-9. doi: 10.1111/jre.12102
41. Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers. 2023;11(2):2077620. doi: 10.1080/21688370.2022.2077620
42. Dabija-Wolter G, Bakken V, Cimpan MR, Johannessen AC, Costea DE. In vitro reconstruction of human junctional and sulcular epithelium. J Oral Pathol Med. 2013;42(5):396-404. doi: 10.1111/jop.12005
43. Fujita T, Kishimoto A, Shiba H, Hayashida K, Kajiya M, Uchida Y, , et al. Irsogladine maleate regulates neutrophil migration and E-cadherin expression in gingival epithelium stimulated by Aggregatibacter actinomycetemcomitans. Biochem Pharmacol. 2010;79(10):1496–1505. doi: 10.1016/j.bcp.2010.01.017
44. Hartmann C, Schwietzer YA, Otani T, Furuse M, Ebnet K. Physiological functions of junctional adhesion molecules (JAMs) in tight junctions. Biochim Biophys Acta Biomembr. 2020;1862(9):183299. doi: 10.1016/j.bbamem.2020.183299
45. Otani T, Furuse M. Tight Junction Structure and Function Revisited. Trends Cell Biol. 2020 Oct;30(10):805-817. doi: 10.1016/j.tcb.2020.08.004. Erratum in: Trends Cell Biol. 2020;30(12):1014. doi: 10.1016/j.tcb.2020.10.001.
46. Kuo WT, Zuo L, Odenwald MA, Madha S, Singh G, Gurniak CB, et al. The Tight Junction Protein ZO-1 Is Dispensable for Barrier Function but Critical for Effective Mucosal Repair. Gastroenterology. 2021;161(6):1924-1939. doi: 10.1053/j.gastro.2021.08.047
47. González-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol. 2000;11(4):315-24. doi: 10.1006/scdb.2000.0178
48. Paschoud S, Yu D, Pulimeno P, Jond L, Turner JR, Citi S. Cingulin and paracingulin show similar dynamic behaviour, but are recruited independently to junctions. Mol Membr Biol. 2011;28(2):123-35. doi: 10.3109/09687688.2010.538937
49. Belardi B, Hamkins-Indik T, Harris AR, Kim J, Xu K, Fletcher DA. A Weak Link with Actin Organizes Tight Junctions to Control Epithelial Permeability. Dev Cell. 2020;54(6):792-804.e7. doi: 10.1016/j.devcel.2020.07.022
50. Liévin-Le Moal V, Servin AL. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev. 2006;19(2):315-37. doi: 10.1128/CMR.19.2.315-337.2006
51. Patra AK, Amasheh S, Aschenbach JR. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds – A comprehensive review. Crit Rev Food Sci Nutr. 2019;59(20):3237-3266. doi: 10.1080/10408398.2018.1486284
52. Abe-Yutori M, Chikazawa T, Shibasaki K, Murakami S. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodont Res. 2017;52:42–50. doi: 10.1111/jre.12367
53. Yamada M, Takahashi N, Matsuda Y, Sato K, Yokoji M, Sulijaya B, et al. A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Sci Rep. 2018;8(1):9008. doi: 10.1038/s41598-018-27408-y
Review
For citations:
Keitsler MI, Slazhneva ES, Ostrovskaya IG, Atrushkevich VG. The role of microbiota and epithelial barrier interaction in the pathogenesis of periodontal diseases: a systematic review. Parodontologiya. 2024;29(4):366-377. (In Russ.) https://doi.org/10.33925/1683-3759-2024-1013