Clinical and microbiological predictors of peri-implantitis risk in patients with chronic periodontitis
https://doi.org/10.33925/1683-3759-2025-1088
Abstract
Relevance. Dental implantation is currently regarded as the most effective approach to restoring the continuity of the dentition. However, individuals with a history of chronic periodontitis face a significantly increased risk of inflammatory complications, particularly peri-implant mucositis and peri-implantitis. Developing effective prevention and treatment strategies requires accurate, timely risk assessment to identify at-risk patients.
Objective. To develop a risk classification model for peri-implantitis in patients with chronic periodontitis based on clinical and microbiological markers, using a decision tree algorithm.
Materials and methods. The study included 177 patients with chronic periodontitis, evenly divided into three groups (n = 59 each): without dental implants, with implants and no clinical signs of peri-implantitis, and with implants and diagnosed peri-implantitis. Clinical examination, microbiological analysis, and PCR testing of subgingival plaque from periodontal pockets were conducted to identify clinical and microbiological markers associated with peri-implantitis risk. Based on these parameters, a machine learning model was developed using the CART (Classification and Regression Tree) algorithm with the Gini index as the splitting criterion.
Results. The most prominent clinical signs observed in patients with peri-implantitis were dentin hypersensitivity, halitosis, exudate, and gingival margin overgrowth. Among the identified microorganisms, the most predictive for peri-implantitis risk were R. mucilaginosa, S. mitis, R. dentocariosa, A. odontolyticus, S. australis, P. gingivalis, F. nucleatum and A. actinomycetemcomitans. The classification model demonstrated high discriminative ability, with an accuracy of 0.75, F1–score of 0.7243, and a ROC–AUC of 0.74.
Conclusion. A comprehensive clinical and microbiological evaluation, supported by statistical analysis and machine learning methods, provides an effective approach for predicting the risk of peri-implantitis in patients with chronic periodontitis. The findings highlight the importance of integrating microbiological diagnostics into standard clinical protocols to enable early identification of high-risk individuals and to guide personalized preventive and therapeutic strategies.
About the Authors
I. V. BazhutovaRussian Federation
Irina V. Bazhutova, DMD, PhD, Associate Professor, Department of the Dentistry, Post-Graduate Education Institute
89 Chapaevskaya Str., Samara, Russian Federation, 443099
A. V. Lyamin
Russian Federation
Artem V. Lyamin, MD, PhD, DSc, Docent, Director of Professional Center for Education and Research in Genetic and Laboratory Technologies
Samara
D. A. Trunin
Russian Federation
Dmitry A. Trunin, DMD, PhD, DSc, Professor, Head of the Department of Dentistry, Post-Graduate Education Institute
Samara
D. V. Alekseev
Russian Federation
Dmitriy V. Alekseev, Specialist, Laboratory of the Culturomic and Proteomic Research in Microbiology, Professional Center for Education and Research in Genetic and Laboratory Technologies
Samara
A. E. Ponomarev
Russian Federation
Artem E. Ponomarev, Biologist, Laboratory of the Immunological Research Methods, Professional Center for Education and Research in Genetic and Laboratory Technologies
Samara
E. V. Zarov
Russian Federation
Evgenii V. Zarov, Specialist, Laboratory of the Immunological Research Methods, Professional Center for Education and Research in Genetic and Laboratory Technologies
Samara
A. I. Erokhin
Russian Federation
Alexey I. Erokhin, DDS, PhD, Docent
Moscow
References
1. Kumar S. Evidence-Based Update on Diagnosis and Management of Gingivitis and Periodontitis. Dent Clin North Am. 2019;63(1):69-81 doi: 10.1016/j.cden.2018.08.005
2. Tsepov LM, Nikolaev AI, Nesterova M, Tsepova EL. Pathogenetic features of the formation of chronic inflammatory periodontal pathology. Bulletin of the Smolensk State Medical Academy. 2018;17(3):206-214 (In Russ.). Available from: https://elibrary.ru/item.asp?id=22527516
3. Bhuyan R, Bhuyan SK, Mohanty JN, Das S, Juliana N, Juliana IF. Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A Review of Its Underlying Mechanisms. Biomedicines. 2022;10(10):2659. doi: 10.3390/biomedicines10102659
4. Sabirova AI, Akramov IA, Ramazanova ZD, Sergeeva VV, Ibisheva LK. Modern aspects of epidemiological issues of periodontal tissue diseases. The scientific heritage. 2021;(73-2):31-38. doi: 10.24412/9215-0365-2021-73-2-31-38
5. Khairova EI, Lebedeva SN, Kharitonova TL. Features of periodontitis treatment depending on clinical manifestations. Bulletin of medical Internet conferences. 2017;7(9):1422-1426 (In Russ.). Available from: https://medconfer.com/files/archive/2017-09/2017-09-5-A-12221.pdf
6. Tsarev VN, Nikolaeva EN, Ippolitov EV. Periodontopathogenic bacteria of the main factor of emergence and development of periodontitis. Journal of Microbiology, Epidemiology and Immunobiology. 2017;5:101-112. doi: 10.36233/0372-9311-2017-5-101-112
7. Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000. 2005;38:135-187. doi: 10.1111/j.1600-0757.2005.00107.x
8. Zhang M, Liu Y, Afzali H, Graves DT. An update on periodontal inflammation and bone loss. Front Immunol. 2024;15:1385436. doi: 10.3389/fimmu.2024.1385436
9. Kuchler U, Chappuis V, Gruber R, Lang NP, Salvi GE. Immediate implant placement with simultaneous guided bone regeneration in the esthetic zone: 10-year clinical and radiographic outcomes. Clin Oral Implants Res. 2016;27(2):253-257. doi: 10.1111/clr.12586
10. Smith MM, Knight ET, Al-Harthi L, Leichter JW. Chronic periodontitis and implant dentistry. Periodontol 2000. 2017;74(1):63-73. doi: 10.1111/prd.12190
11. Di Spirito F, Giordano F, Di Palo MP, D’Ambrosio F, Scognamiglio B, Sangiovanni G, et al. Microbiota of Peri-Implant Healthy Tissues, Peri-Implant Mucositis, and Peri-Implantitis: A Comprehensive Review. Microorganisms. 2024;12(6):1137. doi: 10.3390/microorganisms12061137
12. Fu JH, Wang HL. Breaking the wave of peri-implantitis. Periodontol 2000. 2020;84(1):145-160. doi: 10.1111/prd.12335
13. Astolfi V, Ríos-Carrasco B, Gil-Mur FJ, Ríos-Santos JV, Bullón B, Herrero-Climent M, Bullón P. Incidence of Peri-Implantitis and Relationship with Different Conditions: A Retrospective Study. Int J Environ Res Public Health. 2022;19(7):4147. doi: 10.3390/ijerph19074147
14. Darby I. Risk factors for periodontitis & peri-implantitis. Periodontol 2000. 2022;90(1):9-12. doi: 10.1111/prd.12447
15. Sahrmann P, Gilli F, Wiedemeier DB, Attin T, Schmidlin PR, Karygianni L. The Microbiome of Peri-Implantitis: A Systematic Review and Meta-Analysis. Microorganisms. 2020;8(5):661. doi: 10.3390/microorganisms8050661
16. Wong AW, Zhu X, Zhang S, Li SK, Zhang C, Chu CH. Treatment time for non-surgical endodontic therapy with or without a magnifying loupe. BMC Oral Health. 2015;15:40. doi: 10.1186/s12903-015-0025-7
17. Li S, Dong G, Moschidis A, Ortiz J, Benakanakere MR, Kinane DF, Graves DT. P. gingivalis modulates keratinocytes through FOXO transcription factors. PLoS One. 2013;8(11):e78541. doi: 10.1371/journal.pone.0078541
18. Gazil V, Bandiaky ON, Renard E, Idiri K, Struillou X, Soueidan A. Current Data on Oral Peri-Implant and Periodontal Microbiota and Its Pathological Changes: A Systematic Review. Microorganisms. 2022;10(12):2466. doi: 10.3390/microorganisms10122466
19. Baek KJ, Ji S, Kim YC, Choi Y. Association of the invasion ability of Porphyromonas gingivalis with the severity of periodontitis. Virulence. 2015;6(3):274-281. doi: 10.1080/21505594.2014.1000764
20. Santonocito S, Polizzi A. Oral Microbiota Changes during Orthodontic Treatment. Front Biosci (Elite Ed). 2022;14(3):19. doi: 10.31083/j.fbe1403019
21. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7(5):1016-1025. doi: 10.1038/ismej.2012.174
22. Mack R, Slicker K, Ghamande S, Surani SR. Actinomyces odontolyticus: Rare Etiology for Purulent Pericarditis. Case Rep Med. 2014;2014:734925. doi: 10.1155/2014/734925
23. Willner S, Imam Z, Hader I. Rothia dentocariosa Endocarditis in an Unsuspecting Host: A Case Report and Literature Review. Case Rep Cardiol. 2019;2019:7464251. doi: 10.1155/2019/7464251
24. Leonidou N, Ostyn L, Coenye T, Crabbé A, Dräger A. Genome-scale model of Rothia mucilaginosa predicts gene essentialities and reveals metabolic capabilities. Microbiol Spectr. 2024;12(6):e0400623. doi: 10.1128/spectrum.04006-23
25. Iliopoulos JM, Layrolle P, Apatzidou DA. Microbial-stem cell interactions in periodontal disease. J Med Microbiol. 2022;71(4):10.1099/jmm.0.001503. doi: 10.1099/jmm.0.001503
26. Sousa V, Nibali L, Spratt D, Dopico J, Mardas N, Petrie A, Donos N. Peri-implant and periodontal microbiome diversity in aggressive periodontitis patients: a pilot study. Clin Oral Implants Res. 2017;28(5):558-570. doi: 10.1111/clr.12834
27. Chun Giok K, Menon RK. The Microbiome of Peri-Implantitis: A Systematic Review of Next-Generation Sequencing Studies. Antibiotics (Basel). 2023;12(11):1610. doi: 10.3390/antibiotics12111610
Supplementary files
Review
For citations:
Bazhutova IV, Lyamin AV, Trunin DA, Alekseev DV, Ponomarev AE, Zarov EV, Erokhin AI. Clinical and microbiological predictors of peri-implantitis risk in patients with chronic periodontitis. Parodontologiya. (In Russ.) https://doi.org/10.33925/1683-3759-2025-1088