Innovative microbiological culturomics technologies for assessing the antimicrobial activity of periodontal antiseptics
https://doi.org/10.33925/1683-3759-2025-1123
Abstract
Relevance. The treatment of periodontal diseases currently requires professional oral hygiene procedures involving various antiseptics used as mouth rinses and irrigants.
Objective. To provide an experimental and microbiological rationale for the use of domestically produced periodontal antiseptics and their combinations to enhance antimicrobial efficacy through the application of innovative microbiological culturomics technologies.
Materials and methods. To study the antimicrobial effects of antiseptics, an advanced RTS bioreactor (BioSan, Latvia) was employed. Unlike the previous RTS-1 monocultivator, the new model comprises eight integrated units. Each unit incorporates an innovative agitation mechanism for mixing microbial cultures, with digital data processing and real-time display. The following quaternary ammonium compound (QAC) antiseptics were tested: benzyldimethyl [3-(myristoylamino)propyl]ammonium chloride (Miramistin), benzalkonium chloride, and cetylpyridinium chloride, as well as chlorhexidine digluconate, used as the most common reference agent. The test strains included S. aureus ATCC 25993, E. faecalis, P. intermedia, F. necrophorum 89-5 (Federal Scientific Centre VIEV, FSC VIEV, Moscow, Russia), C. albicans ATCC 10231, and C. krusei Harvard ATCC 625.
Results. Miramistin demonstrated superior antimicrobial efficacy compared to other QAC antiseptics when analyzing microbial growth kinetics. Bacteriostatic effects were achieved at concentrations ranging from 0.012% to 0.05%, while bactericidal effects occurred within 0.05–0.10%. For fungal cultures, fungistatic activity was observed at 0.05–0.10% concentrations, and fungicidal activity at 0.1–0.2%.
Conclusion. Chlorhexidine showed slightly lower efficacy than Miramistin, particularly against fungal isolates, though it outperformed other QAC-based agents. Our findings indicate that QAC antiseptics – especially miramistin – have a milder impact on the composition of the oral microbiota than chlorhexidine.
About the Authors
D. R. AkhmedovRussian Federation
Dzhalalautdin R. Akhmedov, DMD, PhD, DSc, Associate Professor, Department of the Preclinical Dentistry, A. I. Evdokimov Research Institute of Dentistry
Moscow
Z. E. Revazova
Russian Federation
Zalina E. Revazova, DMD, PhD, DSc, Professor, Department of the Preclinical Dentistry, A. I. Evdokimov Research Institute of Dentistry
Moscow
Z. E. Lalieva
Russian Federation
Zalina E. Lalieva, DMD, PhD student, Department of the Preclinical Dentistry, A. I. Evdokimov Research Institute of Dentistry
Moscow
M. S. Podporin
Russian Federation
Mikhail S. Podporin, DMD, PhD, Senior Lecturer, Department of the Microbiology, Virology, and Immunology, V. I. Pokrovsky Research Institute of Fundamental Medicine
4 Dolgorukovskaya Str., Moscow, 127006
T. V. Tsareva
Russian Federation
Tatyana V. Tsareva, DMD, PhD, Associate Professor, Department of the Microbiology, Virology, and Immunology, V. I. Pokrovsky Research Institute of Fundamental Medicine
Moscow
E. R. Sadchikova
Russian Federation
Elena R. Sadchikova, PhD, Senior Researcher, Deputy Director
Moscow
A. A. Labazanov
Russian Federation
Ashab A. Labazanov, DMD, PhD, DSc, Chief Physician "Leader-Dent" Clinic (International Center for Implantation and Dentistry, LLC)
Moscow
References
1. Petrov A.A., Kosova E.V., Loboda E.S., Andreyev D.I., Vashneva V.Y., Mordovina A.M., Orekhova L.Y. Optimizing professional oral hygiene tactics with various methods and tools: impact on microcirculation in periodontal tissues. Parodontologiya. 2024;29(3):313-330 (In Russ.). https://doi.org/10.33925/1683-3759-2024-979
2. Postnikov M.A., Dudina S.E., Tiunova N.V., Shukhorova Y.A., Fedoseikina I.V. Experience professional oral hygiene based on the GBT protocol in patients with hemophilia. Aspirantskiy Vestnik Povolzhiya. 2021; 21(1-2): 21-25. (In Russ.). https://doi.org/10.55531/2072-2354.2021.21.1.21-25
3. Tsarev V.N., Atrushkevich V.G., Ippolitov E.V., Podporin M.S. Comparative analysis of the antimicrobial activity of periodontal antiseptics using an automated system for monitoring the growth of microorganisms in real time. Periodontology. 2017;22(1):4-10. (In Russ). Available from: https://elibrary.ru/item.asp?id=29233663
4. Ushakov R.V., Nuruev N.N., Ushakova T.V., Karpova V.M., Arutyunyan A.A., Labazanov A.A., et al. Combined antimicrobial chemotherapy (fluoroquinolones and imidazoles) in the complex treatment of inflammatory periodontal diseases. Klinicheskaya Stomatologiya (Russia). 2021;1(97):60-65. (In Russ.). https://doi.org/0.37988/1811-153X_2021_1_60
5. Gabidullina V.R., Tsitsiashvili A.M., Zaborovsky A.V., Panin A.M., Tsarev V.N. On the use of antibiotics for the prevention of purulent-inflammatory complications in patients undergoing dental implantation surgery. Stomatology for All / Int. Dental Review. 2022;4(101):39-45. (In Russ.). https://doi.org/10.35556/idr-2022-4(101)39-45
6. Brookes ZLS, Bescos R, Belfield LA, Ali K, Roberts A. Current uses of chlorhexidine for management of oral disease: a narrative review. J Dent. 2020;103:103497. https://doi.org/10.1016/j.jdent.2020.103497
7. Bobichon H, Bouchet P. Action of chlorhexidine on budding Candida albicans: scanning and transmission electron microscopic study. Mycopathologia. 1987;100 (1):27–35. https://doi.org/10.1007/BF00769565
8. Jiang Q, Deng Y, Li S, Yang D, Tao L. Sub-lethal concentrations of chlorhexidine inhibit Candida albicans growth by disrupting ROS and metal ion homeostasis. J Oral Microbiol. 2023 Nov 9;15(1):2278937 https://doi.org/10.1080/20002297.2023.2278937
9. Podporin, M.S., Tsarev V.N., Ippolitov E.V., Tsareva T.V. Experimental substantiation of the development of a dosage form of lactoferrin with enamel matrix derivatives for use in periodontology. Clinical Dentistry. 2022;25;4:74–80. (In Russ.). https://doi.org/10.37988/1811-153X_2022_4_74.
10. Akavov A.N., Rasulov I.M., Podporin M.S., Deshev A.V., Ippolitov E.V., Tsarev V.N., Kolesnikov P.Y. Antimicrobial activity of disinfectants used in prosthetic dentistry depending on the degree of dilution (an experimental in vitro study). Parodontologiya. 2024;29(3):331-340. (In Russ.). https://doi.org/10.33925/1683-3759-2024-931
11. Tsarev V.N., Mitronin A.V., Podporin M.S., Ostanina D.A., Ippolitov E.V., Mitronin V.A. Combined endodontic treatment: microbiological aspects by using scanning electronical microscopy. Endodontics Today. 2021;19(1):11-17. (In Russ.) https://doi.org/10.36377/1683-2981-2021-19-1-11-17
12. Deschepper M, Waegeman W, Eeckloo K, Vogelaers D, Blot S. Effects of chlorhexidine gluconate oral care on hospital mortality: a hospital-wide, observational cohort study. Intensive Care Med. 2018;44(7):1017-1026. https://doi.org/10.1007/s00134-018-5171-3
13. Parreco J, Soe-Lin H, Byerly S, Lu N, Ruiz G, Yeh DD, Namias N, Rattan R. Multi-Center Outcomes of Chlorhexidine Oral Decontamination in Intensive Care Units. Surg Infect (Larchmt). 2020;21(8):659-664 https://doi.org/10.1089/sur.2019.172
14. Sanz M, Marco Del Castillo A, Jepsen S, Gonzalez-Juanatey JR, D'Aiuto F, Bouchard P, et al. Periodontitis and cardiovascular diseases: consensus report. J Clin Periodontol. 2020;47(3):268–288. https://doi.org/10.1111/jcpe.13189
15. Brookes ZLS, Belfield LA, Ashworth A, Casas-Agustench P, Raja M, Pollard AJ, et al. Effects of chlorhexidine mouthwash on the oral microbiome. J Dent. 2021;113:103768. https://doi.org/10.1016/j.jdent.2021.103768
16. Sundqvist ML, Lundberg JO, Weitzberg E. Effects of antiseptic mouthwash on resting metabolic rate: a randomized, double-blind, crossover study. Nitric Oxide. 2016;61:38–44. https://doi.org/10.1016/j.niox.2016.10.003
17. Cutler C, Kiernan M, Willis JR, Gallardo-Alfaro L, Casas-Agustench P, White D, et al. Post-exercise hypotension and skeletal muscle oxygenation is regulated by nitrate-reducing activity of oral bacteria. Free Radic Biol Med. 2019;143:252–259. https://doi.org/10.1016/j.freeradbiomed.2019.07.035
18. Goh CE, Trinh P, Colombo PC, Genkinger JM, Mathema B, Uhlemann AC, et al. Association between nitrate-reducing oral bacteria and cardiometabolic outcomes: results from origins. J Am Heart Assoc. 2019;8(23):e01332. https://doi.org/10.1161/jaha.119.013324
19. Bescos R, du Toit L, Redondo-Rio A, Warburton PJ, Nicholas TL, Kiernan M, et al. The comparative effect of propolis and chlorhexidine mouthwash on oral nitriteproducing bacteria and blood pressure regulation. J Oral Microbiology. 2025;17:1. https://doi.org/10.1080/20002297.2024.2439636
20. Gunjal S, Pateel DGS. Comparative effectiveness of propolis with chlorhexidine mouthwash on gingivitis – a randomized controlled clinical study. BMC Complement Med Ther. 2024;24(1):154. https://doi.org/10.1186/s12906-024-04456-8
21. Nikolaeva EN, Tsarev VN, Tsareva TV, Ippolitov EV, Arutyunov SD. Interrelation of cardiovascular diseases with anaerobic bacteria of subgingival biofilm. Contemp Clin Dent. 2019;10:637-42. https://doi.org/10.4103/ccd.ccd_84_19
22. Tsareva T.V., Balmasova I.P., Tsarev V.N. Subgingival Microbiome in Periodontal Diseases and Comorbid Pathologies (Meta-Analysis). Journal of Microbiology, Epidemiology, and Immunobiology. 2024;101(2):281-292. https://doi.org/10.36233/0372-9311-500
23. Strelnikova E.V., Popov V.A., Gorbatova L.N., Gorbatova M.A., Dubinina A.S. Effect of periodontitis treatment on glycated hemoglobin A1c (HbA1c) levels in patients with type 2 diabetes mellitus: a systematic review. Parodontologiya. 2025;30(2):108-122 (In Russ.). https://doi.org/10.33925/1683-3759-2025-1050
Review
For citations:
Akhmedov DR, Revazova ZE, Lalieva ZE, Podporin MS, Tsareva TV, Sadchikova ER, Labazanov AA. Innovative microbiological culturomics technologies for assessing the antimicrobial activity of periodontal antiseptics. Parodontologiya. (In Russ.) https://doi.org/10.33925/1683-3759-2025-1123



























