Interactive digital platform and cyber-physical systems in medical education
https://doi.org/10.33925/1683-3759-2022-27-4-318-326
Abstract
Relevance. The success and progress of medical education are inherently linked to the achievements of fundamental and applied sciences and depend on the degree of curriculum fulfilment with advanced digital technology effectiveness. The article considers new forms of learning organization based on digital platforms. Information and communication technologies (platforms) allow effective distant coordination of the academic paths for large numbers of students and strict unbiased control over the implementation of assigned tasks. The article considers the specific features of medical digital platforms, algorithmic management forms, necessity and importance of cyber-physical systems, and gives examples of single robotic element implementation used in learning platf orms.
Materials and Methods. The publication selection criteria were: papers published after 2000; relevance to the keywords "Education", "Medical Education", and "Patient Simulation"; publications included in the databases "ScienceDirect" (Scopus), "IEEE", or "NCBI".
Results. Twenty-seven scientific publications were selected by the inclusion and exclusion criteria.
Conclusion. The online learning platform formed by a set of transformed traditional curricula allows for a full access of students to learning resources and can stimulate the teaching staff competencies, which is, in general, a relevant and promising direction for improving the effectiveness of the learning process.
Keywords
About the Authors
S. D. ArutyunovRussian Federation
Sergey D. Arutyunov, DMD, PhD, DSc, Professor, Head of the Department of Digital Dentistry
Moscow
A. A. Yuzhakov
Russian Federation
Aleksandr A. Yuzhakov, PhD, DSc (Engineering), Professor, Head of the Department "Automation and Telemechanics"
Perm
Y. N. Kharakh
Russian Federation
Yaser N. Kharakh, DMD, PhD, Associate Professor, Department of Introduction to Dental Diseases
Moscow
I. I. Bezukladnikov
Russian Federation
Igor I. Bezukladnikov, PhD (Engineering), Associate Professor , Department "Automation and Telemechanics"
Perm
N. B. Astashina
Russian Federation
Nataliya B. Astashina, DMD, PhD, Associate Professor, Head of the Department of Prosthodontics
Perm
A. A. Baidarov
Russian Federation
Andrey A. Baidarov, PhD (Engineering), Head of the Department of Medical Informatics and Medical Systems Management
Perm
References
1. Bitzer DL, Braunfeld PG, Lichtenberger WW. PLATO: An automatic teaching device. IRE Transactions on Education. 1961;4(4):157–161. doi: 10.1109/TE.1961.4322215
2. Bitzer DL, Hicks BL, Johnson RL, Lyman ER. The Plato System: Current Research and Developments. IEEE Transactions on Human Factors in Electronics. 1967;HFE-8(2):64–70. doi: 10.1109/thfe.1967.233313
3. Tsutsumi E, Kinoshita R, Ueno M. Deep Item Response Theory as a Novel Test Theory Based on Deep Learning. Electronics. 2021;10(9):1020. doi: 10.3390/electronics10091020
4. Yanushevich OO, Tashkinov AA, Minaev NV, Arutyunov SD, Astashina NB, Baidarov AA, et al. Dental anthropomorphic robot. A new era in imitation of medical manipulation and clinical admission. 2021;78:64–67. Available from: http://cathedra-mag.ru/wp-content/uploads/2022/04/Cathedra_78.pdf. (In Russ.).
5. Colace F, De Santo M, Vento M. Evaluating on-line learning platforms: a case study. 2003 (36th Annual Hawaii International Conference on System Sciences) [cited 2022 Sep 28]. doi: 10.1109/HICSS.2003.1174342
6. Malikowski SR, Thompson ME, Theis JG. A model for research into course management systems: Bridging technology and learning theory. Journal of Educational Computing Research. 2007;36(2):149–173. doi: 10.2190/1002-1T50-27G2-H3V7
7. Colace F, De Santo M, Pietrosanto A. Evaluation models for e-learning platform: an AHP approach. Proceedings. Frontiers in Education. 2006 (36th Annual Conference) [cited 2022 Sep 28]. doi: 10.1109/FIE.2006.322312
8. Cader A. The Potential for the Use of Deep Neural Networks in e-Learning Student Evaluation with New Data Augmentation Method. AIED 2020: Artificial Intelligence in Education. 2020:37-42. doi: 10.1007/978-3-030-52240-7_7
9. Hussain Z, Ng DM, Alnafisee N, Sheikh Z, Ng N, Khan A, et al. Effectiveness of virtual and augmented reality for improving knowledge and skills in medical students: protocol for a systematic review. BMJ Open. 2021;11(8):e047004. doi: 10.1136/bmjopen-2020-047004
10. Mansoory MS, Khazaei MR, Azizi SM, Niromand E. Comparison of the effectiveness of lecture instruction and virtual reality-based serious gaming instruction on the medical students' learning outcome about approach to coma. BMC medical education. 2021;21(1):347. doi: 10.1186/s12909-021-02771-z
11. Chassignol M, Khoroshavin A, Klimova A, Bilyatdinova, A. Artificial Intelligence trends in education: a narrative overview. Procedia Computer Science. 2018;136:16-24. doi: 10.1016/j.procs.2018.08.233
12. Wartman SA, Combs CD. Medical Education Must Move From the Information Age to the Age of Artificial Intelligence. Academic medicine: journal of the Association of American Medical Colleges. 2018;93(8):1107–1109. doi: 10.1097/ACM.0000000000002044
13. Belpaeme T, Kennedy J, Ramachandran A, Scassellati B, Tanaka F. Social robots for education: A review. Science robotics. 2018;3(21):eaat5954. doi: 10.1126/scirobotics.aat5954
14. Özkan SB, Toz M. A review study on the investigation of the effects of using robots in education on metacognitive behaviors. Computer Applications in Engineering Education. 2022;30(4):1277-1288. doi: 10.1002/cae.22508
15. Tanaka K, Nakanishi H, Ishiguro H. Physical embodiment can produce robot operator’s pseudo presence. Frontiers in ICT. 2015;2:8. doi: 10.3389/fict.2015.00008
16. Di Dio C, Manzi F, Peretti G, Cangelosi A, Harris PL, Massaro D, et al. Shall I Trust You? From Child- Robot Interaction to Trusting Relationships. Frontiers in psychology. 2020;11:469. doi: 10.3389/fpsyg.2020.00469
17. Cominelli L, Feri F, Garofalo R, Giannetti C, Meléndez-Jiménez MA, Greco A, et al. Promises and trust in human-robot interaction. Scientific reports. 2021;11(1):9687. doi: 10.1038/s41598-021-88622-9
18. Nyholm L, Santamäki-Fischer R, Fagerström L. Users' ambivalent sense of security with humanoid robots in healthcare. Informatics for Health and Social Care. 2021;46(2):218-226. doi: 10.1080/17538157.2021.1883027
19. Maran NJ, Glavin RJ. Low-to high-fidelity simulation–a continuum of medical education? Medical education. 2003;37:22–28. doi: 10.1046/j.1365-2923.37.s1.9.x
20. Gaba DM. The future vision of simulation in health care. BMG Quality & safety in health care. 2004;13(1):2-10. doi: 10.1136/qhc.13.suppl_1.i2
21. Bairsto R. Phantom head. British Dental Journal. 2021;231(3):152. doi: 10.1038/s41415-021-3346-8
22. Buchanan JA. Use of simulation technology in dental education. Journal of dental education. 2001;65(11):1225-1231. PMID: 11765868
23. Wierinck E, Puttemans V, Swinnen S, van Steenberghe D. Effect of augmented visual feedback from a virtual reality simulation system on manual dexterity training. European Journal of Dental Education. 2005;9(1):10-16. doi: 10.1111/j.1600-0579.2004.00351.x
24. Yang J, Zhang B. Artificial Intelligence in Intelligent Tutoring Robots: A Systematic Review and Design Guidelines. Applied Sciences. 2019;9(10):2078. doi: 10.3390/app9102078
25. Chen FQ, Leng YF, Ge JF, Wang DW, Li C, Chen B, et al. Effectiveness of Virtual Reality in Nursing Education: Meta-Analysis. Journal of medical Internet research. 2020;22(9):e18290. doi: 10.2196/18290
26. Moussa R, Alghazaly A, Althagafi N, Eshky R, Borzangy S. Effectiveness of Virtual Reality and Interactive Simulators on Dental Education Outcomes: Systematic Review. European Journal of Dentistry. 2022;16(1):14-31. doi: 10.1055/s-0041-1731837
27. Mikropoulos TA, Natsis A. Educational virtual environments: A ten-year review of empirical research (1999– 2009). Computers & education. 2011;56(3):769-780. doi: 10.1016/j.compedu.2010.10.020
28. Barteit S, Lanfermann L, Bärnighausen T, Neuhann F, Beiersmann C. Augmented, Mixed, and Virtual Reality-Based Head-Mounted Devices for Medical Education: Systematic Review. JMIR Serious Games. 2021;9(3):e29080. doi: 10.2196/29080
29. Tang YM, Au KM, Lau HC, Ho GT, Wu CH. Evaluating the effectiveness of learning design with mixed reality (MR) in higher education. Virtual Reality. 2020;24(4):797–807. doi: 10.1007/s10055-020-00427-9
30. Winkler-Schwartz A, Bissonnette V, Mirchi N, Ponnudurai N, Yilmaz R, Ledwos N, et al. Artificial Intelligence in Medical Education: Best Practices Using Machine Learning to Assess Surgical Expertise in Virtual Reality Simulation. Journal of surgical education. 2019;76(6):1681-1690. doi:10.1016/j.jsurg.2019.05.015
31. Sagiroglu S, Sinanc D. Big data: A review. 2003 (International Conference on Collaboration Technologies and Systems (CTS)) [cited 2022 Sep 28]. doi: 10.1109/CTS.2013.6567202
32. Техническое описание Robo-C [Интернет ресурс]. Промобот; 2022. [дата обращения 17.10.2022]. Режим доступа: https://promo-bot.ru/production/robo-c/ Technical description of Robo-C [Internet]. Promobot; 2022. [cited 2022 Oct 17]. Available from: https://promo-bot.ru/production/robo-c/. (In Russ.).
33. Ertel W, Hassan MM, Agrawal A, Pfahler M. ERTRAG - an ergonomic expert [Internet]. Hochschule Ravensburg-Weingarten; 2019. [cited 2022 Sep 28]. Available from: https://www.researchgate.net/project/ERTRAG-anergonomic-expert
34. Техническое описание Promobot V4 [Интернет ресурс]. Промобот; 2022. [дата обращения 17.10.2022]. Режим доступа: https://promo-bot.ru/production/promobot-v4/Technical description of Promobot V4 [Internet]. Promobot; 2022. [cited 2022 Oct 17]. Available from: https://promo-bot.ru/production/promobot-v4/. (In Russ.).
Review
For citations:
Arutyunov SD, Yuzhakov AA, Kharakh YN, Bezukladnikov II, Astashina NB, Baidarov AA. Interactive digital platform and cyber-physical systems in medical education. Parodontologiya. 2022;27(4):318-326. (In Russ.) https://doi.org/10.33925/1683-3759-2022-27-4-318-326