Preview

Parodontologiya

Advanced search

Peculiarities of microcirculation in periodont tissues in children of key age groups sufficient type 1 diabetes. Part II

https://doi.org/10.33925/1683-3759-2019-24-2-108-119

Abstract

Relevance. Morpho-functional changes in peripheral circulation established in type 1 diabetes mellitus correlate with changes in central hemodynamics, allowing the use of microcirculation indicators as diagnostic and prognostic criteria for assessing the degree of functional vascular disorders. Identifcation of microcirculation features of the blood by the method of laser Doppler flowmetry in children with different experience of type 1 diabetes in key age categories.

Materials and methods. The study included 67 children with type 1 diabetes mellitus aged 12-15 years with an experience of the disease from six months to ten years. The comparison group consisted of 38 healthy children. The state of the microvasculature was assessed by laser Doppler flowmetry using a laser analyzer for capillary blood flow LAKK-OP.

Results. In children with an experience of type 1 diabetes of less than two years, microcirculation disorders in periodontal tissues correspond to the hyperemic form, accompanied by increased perfusion, a decrease in the amplitude of low-frequency oscillations, increased heart rate, high blood flling, and blood flow bypass. For children with an endocrinopathy experience of more than three years, microcirculation disorders correspond to a stagnant form, combined with a decrease in perfusion due to stagnation of blood in the venular link, endothelial domination with suppression of neurogenic and cardiac fluctuations, low efciency and redistribution of blood flow in favor of the nutritive link.

Conclusions. With the increase in experience, the degree of compensation of type 1 diabetes, the progression of diabetic microangiopathy, it is advisable to designate two stages of development of microcirculatory disorders. Early – compensatory with active adaptation, including neurogenic and endothelial regulation mechanisms. Late – decompensation with passive adaptation, supporting the effectiveness of microcirculation due to myogenic control of regulation, shunting and increasing the rate of blood outflow.

About the Authors

B. N. Davydov
Tver State Medical University
Russian Federation

DMS, PhD, MD

Department of child dentistry and orthodontics with course in child dentistry 

Tver



D. A. Domenyuk
Stavropol State Medical University
Russian Federation

PhD, MD 

Department of general practice dentistry and child dentistry 

Stavropol



S. V. Dmitrienko
Pyatigorsk Medical-Pharmaceutical Institute Branch of Volgograd State Medical University
Russian Federation

PhD, MD

Department of Dentistry 

Pyatigorsk



References

1. G. M. Barer, K. R. Grigoryan. Periodontitis in patients with type 1 diabetes mellitus (Review of literature). Parodontologiya. 2006;2(39):6-10. (In Russ.).

2. B. N. Davydov, I. M. Bykov, S. V. Dmitriyenko et al. Modern possibilities of clinical-laboratory and x-ray research in pre-clinical diagnostics and prediction of the risk of development of periodontal in children with sugar diabetes of the first type. Part I. Parodontologiya. 2018;3(88):4-11. (In Russ.) DOI: 10.25636/PMP.1.2018.3.1

3. I. I. Dedov, T. K. Kurayev, V. A. Peterkova. Diabetes in children and adolescents. Moscow: GEOTAR-Media. 2013. (In Russ.)

4. M. E. Craig, А. Hattersley, К. С. Donaghue. Definition, epidemiology and classification of diabetes in children and adolescents. Pediatric Diabetes. 2009;10(12):3- 12. DOI: 10.1111/j.1399-5448.2009.00568.x

5. С. М. Gordon, М. В. Leonard, B. S. Zemel. 2013 Pediatric Position Development Conference: executive summary and reflections. J. Clin. Densitom. 2014;17:219-224. https://dx.doi.org/10.1016/j.jocd.2014.01.007

6. I. M. Bykov, L. G. Ivchenko, N. Yu. Kostyukova et al. Features of free radical oxidation and antioxidant protection in children with sugar diabetes of the first type. Kuban Scientific Medical Bulletin. 2017;(4):27-38. (In Russ.) https://doi.org/10.25207/1608-6228-2017-24-4-27-38.

7. F. N. Gil'miyarova, B. N. Davydov, L. G. Ivchenko et al. The effect of the severity of type I diabetes in children on the dental status and immunological, biochemical parameters of blood serum and oral fluid. Part I. Parodontologiya. 2017;2(83):53-60. (In Russ.)

8. O. V. Maslova, Yu. I. Suntsov. Epidemiology of diabetes mellitus and microvascular complications. Diabetes. 2011;14(3):6-11. (In Russ.)

9. P. V. Yushkov, K. V. Opalenkov. The morphogenesis of microangiopathy in diabetes mellitus. Diabetes. 2001;4(1):53-56. (In Russ.)

10. Е. Berger, Е. В. Sochett, А. Peirone et al. Cardiac and vascular function in adolescents and young adults with type 1 diabetes. Diabetes Technol Ther. 2004;6(2):129-135. https://dx.doi.org/10.1089/152091504773731311

11. В. Florys, М. Urban, В. Głowiłska. Association of lipid metabolism with subclinical diabetic cardiomyopathy in children and adolescents with type 1 diabetes. Med Sci Monit. 2000;6(2):342-347.

12. G. Kaminska-Winciorek, G. Deja, J. Polanska, Р. Jarosz-Chobot. Diabetic microangiopathy in capillaroscopic examination of juveniles with diabetes type 1. Postepy Hig Med Dosw (Online). 2012;66:51-59.

13. V. I. Kozlov. Blood microcirculation system: clinical and morphological aspects of the study. Regional blood circulation and microcircus. 2006;1:84-101. (In Russ.)

14. B. N. Davydov, F. N. Gil'miyarova, L. G. Ivchenko et al. Clinicaldiagnostic value of activity of matrix metal proteinaseеs and their tissue inhibitors in assessment of the state of periodont tissue in children with sugar diabetes of the first type. Part I. Pediatric Dentistry and Prophylaxis. 2017;4(63):14-19. (In Russ.)

15. B. N. Davydov, F. N. Gil'miyarova, L. G. Ivchenko et al. Clinical-diagnostic value of activity of matrix metal proteinaseеs and their tissue inhibitors in assessment of the state of periodont tissue in children with sugar diabetes of the first type. Part II. Pediatric Dentistry and Prophylaxis. 2018;1(64):37- 46. (In Russ.)

16. Е.К. Krechina, V. I. Kozlov, V. V. Maslovа. Microcirculation in periodontal gingival tissues. Moscow: GEOTAR-Media. 2007. (In Russ.)

17. D. Chan. Imaging evaluation of lower extremity infrainguinal disease: role of the noninvasive vascular laboratory, computed tomography angiography, and magnetic resonance angiography. Techniques in Vascular and Interventional Radiology. 2010;13(1):11-22. DOI: 10.1053/j.tvir.2009.10.003

18. V. L. Franklin, F. Khan, G. Kennedy. Intensive insulin therapy improves endothelial function and microvascular reactivity in young people with type 1 diabetes Diabetologia. 2008;51(2):353-360. DOI: 10.1007/s00125-007-0870-2.

19. I. Pietrzak, А. Szadkowska, J. Kozłowski et al. The influence of systemic blood pressure on renal function in children and adolescents with type 1 diabetes mellitus. Pol Merkur Lekarski. 2003;14(81):210-212.

20. D. A. Domenyuk, B. N. Davydov, E. G. Vedeshina. Comprehensive assessment of the architectonics of bone tissue and hemodynamics of periodontal tissues in children with dental anomalies. Pediatric Dentistry and Prophylaxis. 2016;3(58):41-48. (In Russ.)

21. L. S. Persin, V. M. Yelizarova, S. V. Dyakova. Pediatric dentistry. Moscow: Medicine. 2006. (In Russ.)

22. Physiology of growth and development of children and adolescents (theoretical and clinical issues): hands. for doctors in 2 tons / ed. A.A. Baranova, L.A. Shcheplyaginoy. Moscow: GEOTAR-Media. 2006. (In Russ.)

23. M. I. Balabolkin, E. M. Klebanova, V. M. Kreminskaya. Differential diagnosis and treatment of endocrine diseases. Moscow: Medicine. 2002. (In Russ.).

24. I. I. Dedov. Novel technologies for the treatment and prevention of diabetes mellitus and its complications. Diabetes. 2013;3:4-10. (In Russ.) DOI: 10.14341/2072-0351-811.

25. Endocrinology and metabolism. T. 2 / Per. from English by ed. F. Fleming, J. D. Baxter, A. E. Broadus, L. A. Fromen. Moscow: Medicine. 1985. (In Russ.)

26. American Diabetes Association’s Standards of Medical Care in Diabetes – 2018. Diabetes Care. 2018;41(1):1-159. https://doi.org/10.2337/dc18-Sint01

27. F. N. Gil'miyarova, B. N. Davydov, L. G. Ivchenko et al. The effect of the severity of type I diabetes in children on the dental status and immunological, biochemical parameters of blood serum and oral fluid. Part II. Parodontologiya. 2017;3(84):36-41. (In Russ.)

28. B. N. Davydov, D. A. Domenyuk, F. N. Gil'miyarova et al. Optimization of the diagnosis of diabetes mellitus type I in children the results of cytomorphological studies of buccal epithelium and processes of oxidative stress in the oral cavity. Pediatric Dentistry and Prophylaxis. 2017;3(62):9-18. (In Russ.)

29. D. A. Domenyuk, B. N. Davydov, F. N. Gil'miyarova et al. Features of the cytokine profile of the oral fluid in children with diabetes type I at different stages of disease compensation. Pediatric Dentistry and Prophylaxis. 2017;1(60):68-76. (In Russ.)

30. A. I. Krupatkin, V. V. Sidorov V. V. Laser Doppler flowmetry of microcirculation of blood. Moscow: Medicine. 2005. (In Russ.)

31. С. Alves, М. Brandao, J. Andion, R. Menezes. Oral health knowledge and habits in children with type 1 diabetes mellitus. Braz Dent J. 2009;20(1):70-73. DOI: 10.1590/S0103-64402009000100012

32. D. W. Cooke, L. Plotnick. Type 1 diabetes mellitus in pediatrics. Pediatr Rev. 2008;29(11):374-384.

33. C.I. Wright, C.I. Kroner, R. Draijer. Non-invasive methods and stimuli for evaluating the skin's microcirculation. J. Pharmacol Toxicol Methods. 2006;54(1):1-25. DOI: 10.1016/j.vascn.2005.09.004.

34. М. Roustit, J.L. Cracowski. Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation. 2012;19(1):47-64. DOI: 10.1111/j.1549-8719.2011.00129.x

35. D. A. Domenyuk, B. N. Davydov, S. V. Dmitrienko et al. Changes of the morphological state of tissue of the paradontal complex in the dynamics of orthodontic transfer of teeth (experimental study). Parodontologiya. 2018;1(86):69-78. (In Russ.) DOI: 10.25636/PMP.1.2018.1.15

36. Y. Kimura, М. Goma, А. Onoe. Integrated laser Doppler blood flowmeter designed to enable wafer-level packaging. IEEE Trans Biomed Eng. 2010;57(8):2026- 2033. DOI: 10.1109/TBME.2010.2043842

37. M.F. Swiontkowski. Laser Doppler Flowmetry – Development and Clinical Application. Iowa Orthop J. 1991;11:119-126.

38. G.E. Nilsson, E.G. Salerud, N. O. T. Stromberg. Laser Doppler Perfusion Monitoring and Imaging. In: Vo-Dinh T, editor. Biomedical photonics handbook. Boca Raton, Florida: CRC Press. 2003.

39. Н. Chung, Т. Dai, S. K. Sharma. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516-533.

40. R. Emshoff. Outcomes of dental fracture injury as related to laser Doppler flow measurements of pulpal blood-flow level. Dent. Traumatol. 2008;24(1):32-37.

41. Е. Lalla, С. Bin, L. Shantanu et al. Periodontal changes in children and adolescents with diabetes: a case-control study. Diabetes Care. 2006;29(2):295-299.

42. С. Р. Andersen, А. Flyvbjerg., К. Buschard et al. Relationship between periodontitis and diabetes: lessons from rodent studies. Journal of Periodontology. 2007;78(7):1264-1275.

43. Н. Strobl. Assessing revascularization of avulsed permanent maxillary incisors by laser Doppler flowmetry. J. Am. Dent. Assoc. 2003; 134(12):1597-1603.

44. А. Szadkowska, I. Pietrzak, В. Mianowska et al. Prehypertension in type 1 diabetic children and adolescents. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw. 2006;12(4):286-291.


Review

For citations:


Davydov BN, Domenyuk DA, Dmitrienko SV. Peculiarities of microcirculation in periodont tissues in children of key age groups sufficient type 1 diabetes. Part II. Parodontologiya. 2019;24(2):108-119. (In Russ.) https://doi.org/10.33925/1683-3759-2019-24-2-108-119

Views: 1618


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-3759 (Print)
ISSN 1726-7269 (Online)